New descriptions of the Lovász number and a Brooks-type theorem
نویسنده
چکیده
In the seminal work [4] L. Lovász introduced the concept of an orthonormal representation of a graph, and also a related value, now popularly known as the Lovász number of the graph. One of the remarkable properties of the Lovász number is that it lies sandwiched between the stability number and the complementer chromatic number. This fact is called the sandwich theorem. In this paper, using new descriptions of the Lovász number and linear algebraic lemmas we give three proofs for a weaker version of the sandwich theorem. A Brooks-type theorem is also presented concerning a simple lower bound for the stability number.
منابع مشابه
A New Theorem Concerning Scattering of Electromagnetic Waves in Multilayered Metamaterial Spherical Structures
The proposed theorem in this paper is indicative of a kind of duality in the propagation of waves in the dual media of and in the spherical structures. Independent of wave frequency, the number of layers, their thickness, and the type of polarization, this theorem holds true in case of any change in any of these conditions. Theorem: Consider a plane wave incident on a multilayered spheric...
متن کاملA New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions
In this paper, a new stratification of mappings, which is called $Psi$-simulation functions, is introduced to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملCommon xed point theorem for w-distance with new integral type contraction
Boujari [5] proved a fixed point theorem with an old version of the integraltype contraction , his proof is incorrect. In this paper, a new generalizationof integral type contraction is introduced. Moreover, a fixed point theorem isobtained.
متن کامل